»óǰ ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ | |
- °¡°Ô ÀüȹøÈ£ : | 1544-1900 |
- Àüȹ®ÀÇ ½Ã°£ : |
¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö (¸ÅÁÖ ¿ù¿äÀÏ, È¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü) |
- °¡°Ô À̸ÞÀÏ : | ink@kyobobook.co.kr |
- ÀÌ¿ë Åùèȸ»ç : | CJ´ëÇÑÅë¿î |
ÆÇ¸Å°¡°ÔÁ¤º¸ |
|
- »ç¾÷ÀÚ¸í : | (ÁÖ)±³º¸¹®°í |
- »ç¾÷ÀÚµî·Ï¹øÈ£ : | 102-81-11670 |
- Åë½ÅÆÇ¸Å¾÷½Å°í : | 01-0653 |
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É |
|
ÀüÈÁÖ¹® ¹× °áÁ¦¹®ÀÇ |
|
- ²ÉÇÇ´Â ¾ÆÄ§¸¶À» : | 1644-8422 |
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼ Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸, ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇØ¼µµ ²É¸¶·Î Á÷Á¢ ÀüÈÁÖ¼¼¿ä. |
»ó¼¼Á¤º¸ | ±¸¸ÅÈıâ (0°³) | »óǰ Q&A (0) | ¹è¼Û/±³È¯/ȯºÒ ¾È³» |
Ã¥¼Ò°³ÀÌ Ã¥ÀÇ ÀúÀÚ Hyunsung Shim(Albert Shim)Àº 300³â°£ Ç®¸®Áö ¾Ê¾Ò´ø ¡°¿Ö dy/dx°¡ ºÐ¼öó·³ ÇൿÇϴ°¡¡±¸¦ ÃÖÃÊ·Î Áõ¸íÇÏ¿´´Ù. AP Calculus AB¡¤BC °úÁ¤À» »õ·Ó°Ô À籸¼ºÇÏ¿©, ¸¸È¿Í ºñÀ¯·Î ½±°í ¸íÄèÇÏ°Ô ¼³¸íÇÑ´Ù.
¡¶AP Calculus AB & BC Rewritten from the Beginning¡·Àº ±âÁ¸ÀÇ ¹ÌÀûºÐ ±³Àç¿¡¼´Â °áÄÚ ´Ù·çÁö ¾Ê¾Ò´ø ÁÖÁ¦, **¡°dy/dx°¡ ¿Ö ºÐ¼öó·³ ÇൿÇϴ°¡¡±**¶ó´Â ³Á¦¸¦ ¾ö¹ÐÈ÷ Áõ¸íÇÑ Àü ¼¼°è ÃÖÃÊÀÇ ±³ÀçÀÌ´Ù. ´Ü¼øÈ÷ °ø½ÄÀ» ¾Ï±âÇÏ°í ¹®Á¦¸¦ Ǫ´Â ¼öÁØÀ» ³Ñ¾î, ±âÈ£ ÇϳªÇϳªÀÇ ÁøÁ¤ÇÑ Àǹ̸¦ ¤¾îÁÖ¸ç ¼öÇÐÀÇ º»ÁúÀ» ÀÌÇØÇϵµ·Ï ¾È³»ÇÑ´Ù.
ÀÌ Ã¥Àº AP Calculus AB¿Í BC °úÁ¤ Àüü¸¦ óÀ½ºÎÅÍ ´Ù½Ã ¾´ ±³Àç·Î, ±âº» °³³ä¿¡¼ ½ÉÈ ¹®Á¦±îÁö ´Ü°èÀûÀ¸·Î ±¸¼ºµÇ¾î ÀÖ´Ù. ƯÈ÷, ¸¸È¿Í Á÷°üÀûÀÎ ºñÀ¯¸¦ °çµé¿© ¼³¸íÇÏ¿© Çлý»Ó¸¸ ¾Æ´Ï¶ó ±³»ç, Çкθð±îÁö ´©±¸³ª ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Ù.
´ºÅϰú ¶óÀÌÇÁ´ÏÃ÷Á¶Â÷ ¸»ÇÏÁö ¸øÇß´ø ¼öÇÐ ±âÈ£ÀÇ ¼û°ÜÁø Àǹ̸¦ ¹àÇô³»¸ç, µ¶ÀÚ´Â ±âÁ¸°ú´Â ÀüÇô ´Ù¸¥ ¹æ½ÄÀ¸·Î ¹ÌÀûºÐÇÐÀ» ¹Ù¶óº¸°Ô µÉ °ÍÀÌ´Ù.
ÀúÀÚ¼Ò°³ÀúÀÚ : Hyunsung Shim(Albert Shim)
ÀúÀÚ ½ÉÇö¼º(¹Ì±¹À̸§ Albert Shim)Àº Çѱ¹ÀÇ ¼ö´É´Ü°úÇпø ¸¶°¨°»ç Ãâ½ÅÀ̸ç 2006³âºÎÅÍ º»°ÝÀûÀ¸·Î À¯Çлý¼öÇÐÀ» ¿¬±¸ ÁöµµÇØ¿À±â ½ÃÀÛÇÏ¿´´Ù. 2008³â¿¡ óÀ½À¸·Î SAT Math±³À縦 Ãâ°£Çß´ø ±×´Â 2009³â Çѱ¹¿¡¼ óÀ½À¸·Î AP Calculus¸¦ Ãâ°£ÇÏ¿´´Ù. ÀÌÈÄ ±×´Â Math Competition, SAT Math½Ã¸®Áî µî ´Ù¾çÇÑ ¹Ì±¹¼öÇÐºÐ¾ß ±³ÀçµéÀ» ¿¬±¸ ÁýÇÊÇØ¿Ô´Ù.
ÇöÀç Çѱ¹¿¡¼ °¡Àå ¸¹Àº À¯ÇлýµéÀ» ÁöµµÇϰí ÀÖ´Â ±×´Â ÇöÀç ÆÀ¾Ë¹öÆ®ÀÇ ´ëÇ¥À̱⵵ Çϸç À¯Çлý ÀÎÅÍ³Ý °ÀÇ 1À§ ¿Â¶óÀÎ °ÀǾ÷ü ¸¶½ºÅÍÇÁ·¾ÀÇ ´ëÇ¥°»çÀ̱⵵ ÇÏ´Ù.
¸ñÂ÷Integration
Indefinite Integrals
Integral?
Basic Formulas
U-Substitution
Complex Formulas
Integration by Parts (BC)
Partial Fractions (BC)
Definite Integrals
Definite Integrals and Formulas
Even Function and Odd Function
Calculating Definite Integrals?¤ý Differentiation and Integration Mixed Together ?¤ý U-Substitution
?¤ý Using Properties of Definite Integrals
Riemann Sum
Average Value of a Function
Riemann Sums and Trapezoid Rule
Integrals Involving Parametric Functions (BC)
Improper Integrals (BC)
Applications of Integration
Area ?¤ý The Area Between a Curve and an Axis or Between Two Curves ?¤ý Polar Curve (BC): Region Bounded by Polar Curve, Tangent Line, Distance
Volume ?¤ý Solid with Known Cross Sections ?¤ý Disk/Washer Method ?¤ý Shell Method
Arc Length (BC)
More Applications of Definite Integrals ?¤ý Definite Integral as Accumulated Change ?¤ý Motion
Differential Equations
Separable Differential Equations
Euler¡¯s Method (BC)
Slope Fields
Exponential Growth and Logistic Differential Equations (BC)
Application of Differentiation and Integration
Fundamental Theorem of Calculus
Analyzing Graphs with Integrals
Related Rates
Absolute Maximum and Minimum
Analyzing Tables
Motion
Series (BC)
What Is a Series?
Convergence Tests?¤ý nth-Term, Integral, P-series, Comparison, Ratio, Root, Alternating Series Tests
Calculating Series ?¤ý Geometric and Telescoping Series
Power Series ?¤ý Radius and Interval of Convergence
Taylor & Maclaurin Series
Error Bound |
±³È¯ ¹× ȯºÒ °¡´É |
»óǰ¿¡ ¹®Á¦°¡ ÀÖÀ» °æ¿ì |
1) »óǰÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆÄ¼Õ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì - ½Å¼±½Äǰ, ³ÃÀå½Äǰ, ³Ãµ¿½Äǰ : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû - ±âŸ »óǰ : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû 2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆÇ¸ÅÀÚ´Â »óǰÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óǰÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹Ýǰ¿¡ µû¸¥ ºñ¿ëÀº ÆÇ¸ÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝǰµµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù. |
´Ü¼øº¯½É ¹× ÁÖ¹®Âø¿ÀÀÇ °æ¿ì |
1) ½Å¼±½Äǰ, ³ÃÀå½Äǰ, ³Ãµ¿½Äǰ ÀçÆÇ¸Å°¡ ¾î·Á¿î »óǰÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù. 2) ÈÀåǰ ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼ ¹× ¼Ò°ß¼¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆÇ¸ÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç ÈÀåǰ°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼ ¹ß±Þºñ¿ëÀ» ÆÇ¸ÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. 3) ±âŸ »óǰ ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã 4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. |
|
±³È¯ ¹× ȯºÒ ºÒ°¡ |
1) ½Åû±âÇÑÀÌ Áö³ °æ¿ì 2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óǰ ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì 3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óǰ ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì 4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óǰÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì 5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöŰÁö ¾ÊÀº °æ¿ì 6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óǰÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì 7) º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì 8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì |