°øÀ¯Çϱâ
AP Calculus AB&BC Rewritten from the Beginning Vol 2
±¸¸ÅÈıâ 0°³ (0)
¤ýµµ¼­Á¤º¸ ÀúÀÚ : Hyunsung Shim(Albert Shim)
ÃâÆÇ»ç : ¹Ì±¹¼öÇבּ¸¼Ò
2005³â 09¿ù 29ÀÏ Ãâ°£  |  ISBN : 1193172586  |  570ÂÊ
¤ý±³º¸È¸¿ø ±³º¸¹®°í ID ¿¬°áÇϱâ
µµ¼­¸¦ ±¸ÀÔÇÏ½Ã¸é ±³º¸¹®°í¿Í ²É¸¶ÀÇ È¸¿øÇýÅÃÀ» ÇÔ²²
¹ÞÀ¸½Ç ¼ö ÀÖ½À´Ï´Ù.
¤ý²É¸¶°¡ 60,000¿ø 54,000¿ø 10%
¤ýÃß°¡ÇýÅà ²É 3¼ÛÀÌ
²É¼ÛÀÌÁö°© ¸¸µé±â>
²É¼ÛÀÌ Àû¸³À» À§Çؼ­ '²É¼ÛÀÌÁö°©'À» ¸¸µå¼Å¾ß ÇÕ´Ï´Ù.
¤ý¹è¼ÛÁö¿ª ±¹³»
¤ý¹è¼Ûºñ
Á¶°ÇºÎ¹«·á¹è¼Û
  • ÀÌ °¡°ÔÀÇ ¹«·á¹è¼Û »óǰÀ» ÇÔ²² ÁÖ¹®Çϰųª, ÃÑÁÖ¹®±Ý¾×ÀÌ 15,000¿ø ÀÌ»óÀÌ¸é ¹«·á¹è¼Û.
  • 15,000¿ø ¹Ì¸¸ÀÌ¸é ¹è¼Ûºñ 2,500¿ø °í°´ºÎ´ã
  • µµ¼­»ê°£/Á¦ÁÖµµ´Â Ãß°¡¿îÀÓºñ ºÎ°úµÉ ¼ö ÀÖÀ½
1ÀÏ À̳» Ãâ°í
¤ý¼ö·®
ÃÑ ÇÕ°è±Ý¾×  ¿ø
Âò
¼±¹°
Àå¹Ù±¸´Ï ´ã±â
¹Ù·Î ±¸¸ÅÇϱâ

Àå¹Ù±¸´Ï¿¡ ´ã¾Ò½À´Ï´Ù. Àå¹Ù±¸´Ï¸¦ È®ÀÎ ÇϽðڽÀ´Ï±î?

¼îÇΰè¼ÓÇϱâ
Àå¹Ù±¸´Ïº¸±â
¤ýÀÌ °¡°ÔÀÇ ´Ù¸¥ »óǰ ¸ðµç»óǰº¸±â+
20,000¿ø
18,000¿ø 10%¡é
18,000¿ø
16,200¿ø 10%¡é
16,800¿ø
15,120¿ø 10%¡é
21,900¿ø
19,710¿ø 10%¡é
²ÞÀ» ÇÇ¿ì´Â ¼¼»ó, ÀÎÅÍ³Ý ±³º¸¹®°íÀÔ´Ï´Ù.
²ÞÀ» ÇÇ¿ì´Â ¼¼»ó, ÀÎÅÍ³Ý ±³º¸¹®°íÀÔ´Ï´Ù.
°¡°ÔÁÖÀÎ : ±³º¸¹®°í
ÀüÈ­ ¹× ÅùèÁ¤º¸
ÀüÈ­ ¹× ÅùèÁ¤º¸
»óǰ ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ
- °¡°Ô ÀüÈ­¹øÈ£ : 1544-1900
- ÀüÈ­¹®ÀÇ ½Ã°£ : ¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö
(¸ÅÁÖ ¿ù¿äÀÏ, È­¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü)
- °¡°Ô À̸ÞÀÏ : ink@kyobobook.co.kr
- ÀÌ¿ë Åùèȸ»ç : CJ´ëÇÑÅë¿î
ÆÇ¸Å°¡°ÔÁ¤º¸
- »ç¾÷ÀÚ¸í : (ÁÖ)±³º¸¹®°í
- »ç¾÷ÀÚµî·Ï¹øÈ£ : 102-81-11670
- Åë½ÅÆÇ¸Å¾÷½Å°í : 01-0653
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É
ÀüÈ­ÁÖ¹® ¹× °áÁ¦¹®ÀÇ
- ²ÉÇÇ´Â ¾ÆÄ§¸¶À» : 1644-8422
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼­
Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ
µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸,
ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇØ¼­µµ ²É¸¶·Î Á÷Á¢ ÀüÈ­ÁÖ¼¼¿ä.
 À̾߱â²É¹ç
µî·ÏµÈ À̾߱Ⱑ ¾ø½À´Ï´Ù.
»ó¼¼Á¤º¸ ±¸¸ÅÈıâ (0°³)
(0)
»óǰ Q&A (0) ¹è¼Û/±³È¯/ȯºÒ ¾È³»

Ã¥¼Ò°³

ÀÌ Ã¥ÀÇ ÀúÀÚ Hyunsung Shim(Albert Shim)Àº 300³â°£ Ç®¸®Áö ¾Ê¾Ò´ø ¡°¿Ö dy/dx°¡ ºÐ¼öó·³ ÇൿÇϴ°¡¡±¸¦ ÃÖÃÊ·Î Áõ¸íÇÏ¿´´Ù. AP Calculus AB¡¤BC °úÁ¤À» »õ·Ó°Ô À籸¼ºÇÏ¿©, ¸¸È­¿Í ºñÀ¯·Î ½±°í ¸íÄèÇÏ°Ô ¼³¸íÇÑ´Ù. ¡¶AP Calculus AB & BC Rewritten from the Beginning¡·Àº ±âÁ¸ÀÇ ¹ÌÀûºÐ ±³Àç¿¡¼­´Â °áÄÚ ´Ù·çÁö ¾Ê¾Ò´ø ÁÖÁ¦, **¡°dy/dx°¡ ¿Ö ºÐ¼öó·³ ÇൿÇϴ°¡¡±**¶ó´Â ³­Á¦¸¦ ¾ö¹ÐÈ÷ Áõ¸íÇÑ Àü ¼¼°è ÃÖÃÊÀÇ ±³ÀçÀÌ´Ù. ´Ü¼øÈ÷ °ø½ÄÀ» ¾Ï±âÇÏ°í ¹®Á¦¸¦ Ǫ´Â ¼öÁØÀ» ³Ñ¾î, ±âÈ£ ÇϳªÇϳªÀÇ ÁøÁ¤ÇÑ Àǹ̸¦ ¤¾îÁÖ¸ç ¼öÇÐÀÇ º»ÁúÀ» ÀÌÇØÇϵµ·Ï ¾È³»ÇÑ´Ù. ÀÌ Ã¥Àº AP Calculus AB¿Í BC °úÁ¤ Àüü¸¦ óÀ½ºÎÅÍ ´Ù½Ã ¾´ ±³Àç·Î, ±âº» °³³ä¿¡¼­ ½ÉÈ­ ¹®Á¦±îÁö ´Ü°èÀûÀ¸·Î ±¸¼ºµÇ¾î ÀÖ´Ù. ƯÈ÷, ¸¸È­¿Í Á÷°üÀûÀÎ ºñÀ¯¸¦ °çµé¿© ¼³¸íÇÏ¿© Çлý»Ó¸¸ ¾Æ´Ï¶ó ±³»ç, Çкθð±îÁö ´©±¸³ª ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Ù. ´ºÅϰú ¶óÀÌÇÁ´ÏÃ÷Á¶Â÷ ¸»ÇÏÁö ¸øÇß´ø ¼öÇÐ ±âÈ£ÀÇ ¼û°ÜÁø Àǹ̸¦ ¹àÇô³»¸ç, µ¶ÀÚ´Â ±âÁ¸°ú´Â ÀüÇô ´Ù¸¥ ¹æ½ÄÀ¸·Î ¹ÌÀûºÐÇÐÀ» ¹Ù¶óº¸°Ô µÉ °ÍÀÌ´Ù.

ÀúÀÚ¼Ò°³

ÀúÀÚ : Hyunsung Shim(Albert Shim) ÀúÀÚ ½ÉÇö¼º(¹Ì±¹À̸§ Albert Shim)Àº Çѱ¹ÀÇ ¼ö´É´Ü°úÇпø ¸¶°¨°­»ç Ãâ½ÅÀ̸ç 2006³âºÎÅÍ º»°ÝÀûÀ¸·Î À¯Çлý¼öÇÐÀ» ¿¬±¸ ÁöµµÇØ¿À±â ½ÃÀÛÇÏ¿´´Ù. 2008³â¿¡ óÀ½À¸·Î SAT Math±³À縦 Ãâ°£Çß´ø ±×´Â 2009³â Çѱ¹¿¡¼­ óÀ½À¸·Î AP Calculus¸¦ Ãâ°£ÇÏ¿´´Ù. ÀÌÈÄ ±×´Â Math Competition, SAT Math½Ã¸®Áî µî ´Ù¾çÇÑ ¹Ì±¹¼öÇÐºÐ¾ß ±³ÀçµéÀ» ¿¬±¸ ÁýÇÊÇØ¿Ô´Ù. ÇöÀç Çѱ¹¿¡¼­ °¡Àå ¸¹Àº À¯ÇлýµéÀ» ÁöµµÇϰí ÀÖ´Â ±×´Â ÇöÀç ÆÀ¾Ë¹öÆ®ÀÇ ´ëÇ¥À̱⵵ Çϸç À¯Çлý ÀÎÅÍ³Ý °­ÀÇ 1À§ ¿Â¶óÀÎ °­ÀǾ÷ü ¸¶½ºÅÍÇÁ·¾ÀÇ ´ëÇ¥°­»çÀ̱⵵ ÇÏ´Ù.

¸ñÂ÷

Integration Indefinite Integrals Integral? Basic Formulas U-Substitution Complex Formulas Integration by Parts (BC) Partial Fractions (BC) Definite Integrals Definite Integrals and Formulas Even Function and Odd Function Calculating Definite Integrals?¤ý Differentiation and Integration Mixed Together ?¤ý U-Substitution ?¤ý Using Properties of Definite Integrals Riemann Sum Average Value of a Function Riemann Sums and Trapezoid Rule Integrals Involving Parametric Functions (BC) Improper Integrals (BC) Applications of Integration Area ?¤ý The Area Between a Curve and an Axis or Between Two Curves ?¤ý Polar Curve (BC): Region Bounded by Polar Curve, Tangent Line, Distance Volume ?¤ý Solid with Known Cross Sections ?¤ý Disk/Washer Method ?¤ý Shell Method Arc Length (BC) More Applications of Definite Integrals ?¤ý Definite Integral as Accumulated Change ?¤ý Motion Differential Equations Separable Differential Equations Euler¡¯s Method (BC) Slope Fields Exponential Growth and Logistic Differential Equations (BC) Application of Differentiation and Integration Fundamental Theorem of Calculus Analyzing Graphs with Integrals Related Rates Absolute Maximum and Minimum Analyzing Tables Motion Series (BC) What Is a Series? Convergence Tests?¤ý nth-Term, Integral, P-series, Comparison, Ratio, Root, Alternating Series Tests Calculating Series ?¤ý Geometric and Telescoping Series Power Series ?¤ý Radius and Interval of Convergence Taylor & Maclaurin Series Error Bound
±¸¸ÅÈıâ
ÀÌ »óǰ¿¡ ´ëÇÑ ±¸¸ÅÈıâ´Â ±¸¸ÅÇϽŠºÐ¿¡ ÇÑÇØ 'ÁÖ¹®/¹è¼ÛÁ¶È¸'¿¡¼­ ÀÛ¼ºÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.
¸¸Á·µµ¼ø
Ãֽżø
ÀÛ¼ºµÈ ±¸¸ÅÈıⰡ ¾ø½À´Ï´Ù.
    »óǰQ&A
    »óǰ¿¡ °üÇÑ ±Ã±ÝÇϽŠ»çÇ×À» ¹°¾îº¸¼¼¿ä!
    ±Û¾²±â
    ±Û¾²±â
      ¹è¼Û/±³È¯/ȯºÒ ¾È³»
      ¹è¼Û¾È³»
      - ÁÖ¹®±Ý¾×ÀÌ 15,000¿ø ÀÌ»óÀÎ °æ¿ì ¹«·á¹è¼Û, 15,000 ¹Ì¸¸ÀÎ °æ¿ì ¹è¼Ûºñ 2,500¿øÀÌ ºÎ°úµË´Ï´Ù. (´Ü, ¹«·á¹è¼Û »óǰÀÇ °æ¿ì Á¦¿Ü)
      - ÁÖ¹® ÈÄ ¹è¼ÛÁö¿ª¿¡ µû¶ó ±¹³» ÀϹÝÁö¿ªÀº ±Ù¹«ÀÏ(¿ù-±Ý) ±âÁØ 1Àϳ» Ãâ°íµÊÀ» ¿øÄ¢À¸·Î Çϳª, ±â»ó»óȲ µîÀÇ ÀÌÀ¯·Î Áö¿¬µÉ ¼öµµ ÀÖ½À´Ï´Ù. (´Ü, ÀÏ¿äÀÏ ¹× °øÈÞÀÏ¿¡´Â ¹è¼ÛµÇÁö ¾Ê½À´Ï´Ù.)
      - µµ¼­ »ê°£ Áö¿ª ¹× Á¦ÁÖµµÀÇ °æ¿ì´Â Ç×°ø/µµ¼± Ãß°¡¿îÀÓÀÌ ºÎ°úµÉ ¼ö ÀÖ½À´Ï´Ù.
      - ÇØ¿ÜÁö¿ªÀ¸·Î´Â ¹è¼ÛµÇÁö ¾Ê½À´Ï´Ù.
      ±³È¯/ȯºÒ ¾È³»
      - »óǰÀÇ Æ¯¼º¿¡ µû¸¥ ±¸Ã¼ÀûÀÎ ±³È¯ ¹× ȯºÒ±âÁØÀº °¢ »óǰÀÇ '»ó¼¼Á¤º¸'¸¦ È®ÀÎÇϽñ⠹ٶø´Ï´Ù.
      - ±³È¯ ¹× ȯºÒ½ÅûÀº °¡°Ô ¿¬¶ôó·Î ÀüÈ­ ¶Ç´Â À̸ÞÀÏ·Î ¿¬¶ôÁֽøé ÃÖ¼±À» ´ÙÇØ ½Å¼ÓÈ÷ ó¸®ÇØ µå¸®°Ú½À´Ï´Ù.

      ±³È¯ ¹× ȯºÒ °¡´É »óǰ¿¡
      ¹®Á¦°¡ ÀÖÀ» °æ¿ì
      1) »óǰÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆÄ¼Õ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì
      - ½Å¼±½Äǰ, ³ÃÀå½Äǰ, ³Ãµ¿½Äǰ : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû
      - ±âŸ »óǰ : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû
      2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆÇ¸ÅÀÚ´Â »óǰÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óǰÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹Ýǰ¿¡ µû¸¥ ºñ¿ëÀº ÆÇ¸ÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝǰµµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù.
      ´Ü¼øº¯½É ¹×
      ÁÖ¹®Âø¿ÀÀÇ °æ¿ì
      1) ½Å¼±½Äǰ, ³ÃÀå½Äǰ, ³Ãµ¿½Äǰ
      ÀçÆÇ¸Å°¡ ¾î·Á¿î »óǰÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù.
      2) È­Àåǰ
      ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼­ ¹× ¼Ò°ß¼­¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆÇ¸ÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç È­Àåǰ°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼­ ¹ß±Þºñ¿ëÀ» ÆÇ¸ÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù.
      3) ±âŸ »óǰ
      ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã
      4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
      ±³È¯ ¹× ȯºÒ ºÒ°¡ 1) ½Åû±âÇÑÀÌ Áö³­ °æ¿ì
      2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óǰ ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì
      3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óǰ ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì
      4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óǰÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼­¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöŰÁö ¾ÊÀº °æ¿ì
      6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óǰÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì
      7) º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì