°øÀ¯Çϱâ
AI ½Å¾à°³¹ß ù°ÉÀ½
±¸¸ÅÈıâ 0°³ (0)
¤ýµµ¼­Á¤º¸ ÀúÀÚ : ±è¿ì¿¬
ÃâÆÇ»ç : ½Ã°ø»ç
2025³â 10¿ù 17ÀÏ Ãâ°£  |  ISBN : 1171256582  |  280ÂÊ  |  ±Ô°Ýèâ
¤ý±³º¸È¸¿ø ±³º¸¹®°í ID ¿¬°áÇϱâ
µµ¼­¸¦ ±¸ÀÔÇÏ½Ã¸é ±³º¸¹®°í¿Í ²É¸¶ÀÇ È¸¿øÇýÅÃÀ» ÇÔ²²
¹ÞÀ¸½Ç ¼ö ÀÖ½À´Ï´Ù.
¤ý²É¸¶°¡ 30,000¿ø 27,000¿ø 10%
¤ýÃß°¡ÇýÅà ²É 3¼ÛÀÌ
²É¼ÛÀÌÁö°© ¸¸µé±â>
²É¼ÛÀÌ Àû¸³À» À§Çؼ­ '²É¼ÛÀÌÁö°©'À» ¸¸µå¼Å¾ß ÇÕ´Ï´Ù.
¤ý¹è¼ÛÁö¿ª ±¹³»
¤ý¹è¼Ûºñ
Á¶°ÇºÎ¹«·á¹è¼Û
  • ÀÌ °¡°ÔÀÇ ¹«·á¹è¼Û »óǰÀ» ÇÔ²² ÁÖ¹®Çϰųª, ÃÑÁÖ¹®±Ý¾×ÀÌ 15,000¿ø ÀÌ»óÀÌ¸é ¹«·á¹è¼Û.
  • 15,000¿ø ¹Ì¸¸ÀÌ¸é ¹è¼Ûºñ 2,500¿ø °í°´ºÎ´ã
  • µµ¼­»ê°£/Á¦ÁÖµµ´Â Ãß°¡¿îÀÓºñ ºÎ°úµÉ ¼ö ÀÖÀ½
1ÀÏ À̳» Ãâ°í
¤ý¼ö·®
ÃÑ ÇÕ°è±Ý¾×  ¿ø
Âò
¼±¹°
Àå¹Ù±¸´Ï ´ã±â
¹Ù·Î ±¸¸ÅÇϱâ

Àå¹Ù±¸´Ï¿¡ ´ã¾Ò½À´Ï´Ù. Àå¹Ù±¸´Ï¸¦ È®ÀÎ ÇϽðڽÀ´Ï±î?

¼îÇΰè¼ÓÇϱâ
Àå¹Ù±¸´Ïº¸±â
²ÞÀ» ÇÇ¿ì´Â ¼¼»ó, ÀÎÅÍ³Ý ±³º¸¹®°íÀÔ´Ï´Ù.
²ÞÀ» ÇÇ¿ì´Â ¼¼»ó, ÀÎÅÍ³Ý ±³º¸¹®°íÀÔ´Ï´Ù.
°¡°ÔÁÖÀÎ : ±³º¸¹®°í
ÀüÈ­ ¹× ÅùèÁ¤º¸
ÀüÈ­ ¹× ÅùèÁ¤º¸
»óǰ ¾È³» ¹× ȯºÒ, ±³È¯, ¹è¼Û¹®ÀÇ
- °¡°Ô ÀüÈ­¹øÈ£ : 1544-1900
- ÀüÈ­¹®ÀÇ ½Ã°£ : ¿ÀÀü 9½ÃºÎÅÍ ¿ÀÈÄ 6½Ã±îÁö
(¸ÅÁÖ ¿ù¿äÀÏ, È­¿äÀÏ, ¼ö¿äÀÏ, ¸ñ¿äÀÏ, ±Ý¿äÀÏ, °øÈÞÀÏ Á¦¿Ü)
- °¡°Ô À̸ÞÀÏ : ink@kyobobook.co.kr
- ÀÌ¿ë Åùèȸ»ç : CJ´ëÇÑÅë¿î
ÆÇ¸Å°¡°ÔÁ¤º¸
- »ç¾÷ÀÚ¸í : (ÁÖ)±³º¸¹®°í
- »ç¾÷ÀÚµî·Ï¹øÈ£ : 102-81-11670
- Åë½ÅÆÇ¸Å¾÷½Å°í : 01-0653
- Çö±Ý¿µ¼öÁõ : ¹ß±Þ°¡´É
ÀüÈ­ÁÖ¹® ¹× °áÁ¦¹®ÀÇ
- ²ÉÇÇ´Â ¾ÆÄ§¸¶À» : 1644-8422
°¡°Ô¿Í Á÷°Å·¡¸¦ ÇÏ½Ã¸é ²É¼ÛÀÌ Àû¸³ ¹× °¢Á¾ ÇýÅÿ¡¼­
Á¦¿ÜµÇ°í, ¸¸ÀÏÀÇ ¹®Á¦°¡ ¹ß»ýÇÏ´Â °æ¿ì¿¡µµ ²É¸¶ÀÇ
µµ¿òÀ» ¹ÞÀ¸½Ç ¼ö ¾ø½À´Ï´Ù. °¡°ÔÀÇ ºÎ´çÇÑ ¿ä±¸,
ºÒ°øÁ¤ ÇàÀ§ µî¿¡ ´ëÇØ¼­µµ ²É¸¶·Î Á÷Á¢ ÀüÈ­ÁÖ¼¼¿ä.
 À̾߱â²É¹ç
µî·ÏµÈ À̾߱Ⱑ ¾ø½À´Ï´Ù.
»ó¼¼Á¤º¸ ±¸¸ÅÈıâ (0°³)
(0)
»óǰ Q&A (0) ¹è¼Û/±³È¯/ȯºÒ ¾È³»

Ã¥¼Ò°³

AI ½Å¾à°³¹ß, ±âÃÊ¿¡¼­ ¹Ì·¡±îÁö ´Ü¹éÁú, ¾à¹° »óÈ£ÀÛ¿ëºÎÅÍ »ý¼ºÇü AI ±â¹Ý ½Å¾à ¼³°è±îÁö, »ý¸í°úÇаú µ¥ÀÌÅÍ °úÇÐÀÇ ±³Â÷Á¡À» ½±°Ô Àü´ÞÇÏ´Â ¾È³»¼­ÀÌ´Ù.

»ó¼¼À̹ÌÁö

¸ñÂ÷

Ã¥À» Æì³»¸ç ¸Ó¸®¸» ÃßõÀÇ ¸» Chapter 1. ½Å¾à°³¹ßÀÇ ±âº» °³³ä 1. Áúº´°ú ½Å¾à°³¹ß 1-1. ´Ü¹éÁú°ú Áúº´ (Protein and disease) 1-2. ¾à¹°ÀÇ ÀÛ¿ë ±âÀü (Mechanism of action) 1-3. ¾à¹° ¹ß±¼ ¹× °³¹ß °úÁ¤ (Drug discovery & development process) 1-4. »ýüºÐ¼® (Bioassay) 1-5. ¾à¹° °³¹ß È¿À²¼º Áö¼ÓÀûÀÎ ÀúÇÏ 2. ÄÄÇ»ÅÍ ±â¹Ý ½Å¾à°³¹ß°ú ÀΰøÁö´É 2-1. ÄÄÇ»ÅÍ ±â¹Ý ½Å¾à°³¹ß (Computer-Aided Drug Design; CADD) 2-2. ±¸Á¶ ±â¹Ý °¡»ó Ž»ö °úÁ¤ (Structure-Based Virtual Screening; SBVS) 2-3. °áÇÕ ±¸Á¶ ¿¹Ãø (Binding pose prediction) 2-4. CADD ¹æ¹ýÀÇ ÀåÁ¡°ú ´ÜÁ¡ 2-5. AI ±â¹Ý ½Å¾à°³¹ß °¡¼ÓÈ­ 2-6. CADD±â¼úÀÇ ¹ßÀü°ú »ý¼ºÇü AIÀÇ µîÀå 3. ¿ä¾à Chapter 2. µö·¯´× ÀÔ¹® (Introduction to deep learning) 1. °³¿ä 2. ¼±Çü ȸ±Í ¹æ¹ý 2-1. ¼±Çü ȸ±Í 2-2. ºñ¿ëÇÔ¼ö (Cost function) 2-3. °æ»ç Çϰ­¹ý 2-4. º¼·Ï ÇÔ¼ö (Convex function) 2-5. °æ»ç Çϰ­¹ý ¾Ë°í¸®Áò 2-6. °¡¿ì½Ã¾È ³ëÀÌÁî (Gaussian noise) 2-7. ÃÖ´ë ¿ìµµ (Maximum likelihood) 3. ¼±Çü ºÐ·ù (Linear classification) 3-1. ºÐ·ù (Classification) 3-2. °áÁ¤ °æ°è (Decision boundary) 3-3. ·ÎÁö½ºÆ½ ȸ±Í (Logistic regression) 3-4. ·ÎÁö½ºÆ½ ÇÔ¼öÀÇ ºñ¿ëÇÔ¼ö 3-5. ´ÙÁߺзù¿Í softmax ÇÔ¼ö 4. µö·¯´×ÀÇ °³³ä (Concept of deep learning) 4-1. µö·¯´×ÀÇ °³³ä 4-2. ¿Ö µö·¯´×Àΰ¡? 4-3. Àΰø ½Å°æ¸Á (Artificial neural network) 4-4. ÆÛ¼ÁÆ®·Ð (Perceptron) 4-5. ³í¸® °ÔÀÌÆ® (Logic gate) 5. ´ÙÃþ ±¸Á¶ ÆÛ¼ÁÆ®·Ð 5-1. ´ÙÃþ ±¸Á¶ ÆÛ¼ÁÆ®·ÐÀÇ °³³ä 5-2. ºñ¼±Çü¼º°ú Ȱ¼ºÈ­ ÇÔ¼ö (Nonlinearity and activation function) 5-3. º¸Æí ±Ù»ç Á¤¸® (Universal approximation theorem) 5-4. ¿Ö ´õ ±íÀº Àΰø ½Å°æ¸ÁÀÌ ÇÊ¿äÇѰ¡? 6. ¼øÀüÆÄ¸¦ ÅëÇÑ ¿¹Ãø 7. ¿ªÀüÆÄ ±â¹Ý ÇнÀ 7-1. ¿ªÀüÆÄ ±âº» °³³ä 7-2. È®·üÀû °æ»ç Çϰ­¹ý 7-3. ¿ªÀüÆÄ °úÁ¤ Chapter 3. Á¤±ÔÈ­ ¹æ¹ý (Regularization) 1. ÀϹÝÈ­ (Generalization) 1-1. ÀϹÝÈ­¿¡ ´ëÇÑ ±âº» °³³ä 1-2. °ú¼ÒÀûÇÕ°ú °úÀûÇÕ (Underfitting and overfitting) 1-3. ºÐ»ê°ú ÆíÇâ (Variance and bias) 2. ¸ðµ¨ÀÇ ¿ë·® (Model capacity) 2-1. ¸ðµ¨ ¿ë·®°ú °ú¼ÒÀûÇÕ/°úÀûÇÕ 2-2. Ç¥Çö ¿ë·® (Representational capacity) 2-3. ÀûÀýÇÑ ¸ðµ¨ ¼±Åà (Optimal model selection) 3. Á¤±ÔÈ­ ±â¹ý (Regularization techniques) 3-1. µ¥ÀÌÅÍ Áõ°­ (Data augmentation) 3-2. ±³Â÷ °ËÁõ (Cross validation) 3-3. L1/L2 Á¤±ÔÈ­ 3-4. µå·Ó¾Æ¿ô (Dropout) Chapter 4. µö·¯´× ¸ðµ¨ 1 (Deep learning models 1) 1. ºÐÀÚ Ç¥Çö¹ý (Molecular representation) 1-1. ºÐÀÚ Áö¹® 1-2. SMILES 2. ÇÕ¼º°ö ½Å°æ¸Á (Convolution Neural Network; CNN) 2-1. ½ÉÃþ ½Å°æ¸ÁÀÇ ´ÜÁ¡ 2-2. ÇÕ¼º°ö ½Å°æ¸ÁÀÇ ±âº» °³³ä 2-3. ÇÕ¼º°ö ¿¬»ê 2-4. ´ÙÁß Ã¤³Î (Multiple Channel) 2-5. Ç®¸µ (Pooling) 2-6. ½ÉÃþ ½Å°æ¸Á°ú ÇÕ¼º°ö ½Å°æ¸ÁÀÇ ºñ±³ 2-7. ÆÐµù (Padding) 2-8. ÇÕ¼º°ö ½Å°æ¸Á 2-9. 3Â÷¿ø ÇÕ¼º°ö ½Å°æ¸Á°ú ½Å¾à°³¹ß ºÐ¾ß¿¡¼­ÀÇ ÀÀ¿ë 2-10. 3Â÷¿ø ÇÕ¼º°ö ½Å°æ¸Á ±â¹Ý ½Å¾à°³¹ß ¿¬±¸ »ç·Ê 3. ¼øÈ¯ ½Å°æ¸Á (Recurrent Neural Network; RNN) 3-1. ¿Ö ¼øÈ¯ ½Å°æ¸ÁÀÌ ÇÊ¿äÇѰ¡? 3-2. ¼øÈ¯ ½Å°æ¸Á ¿ø¸® 3-3. ¼øÈ¯ ½Å°æ¸Á ¿¬»ê 3-4. ¼øÈ¯ ½Å°æ¸ÁÀÇ °¡ÁßÄ¡ °øÀ¯ ¹æ½Ä 3-5. ÀÚ±âȸ±Í ±¸Á¶¿Í È®·üÀû ½ÃÄö½º ¸ðµ¨¸µ 3-6. ¼øÈ¯ ½Å°æ¸Á ¿¬»ê ¿¹½Ã 3-7. ¼øÈ¯ ½Å°æ¸Á¿¡¼­ÀÇ ±â¿ï±â ¼Ò½Ç ¹®Á¦ 3-8. LSTM (Long Short-Term Memory) 3-8. LSTM ±¸Á¶Àû º¹À⼺°ú GRUÀÇ µîÀå Chapter 5. µö·¯´× ¸ðµ¨ 2 (Deep learning models 2) 1. ±Í³³Àû ÆíÇâÀÇ °³³ä ¹× ¿ªÇÒ 1-1. ±Í³³Àû ÆíÇâ (Inductive bias) 1-2. °ü°èÀû Ãß·Ð (Relational reasoning) 1-3. ¿ÏÀü ¿¬°á ½Å°æ¸Á°ú °¡ÁßÄ¡ °øÀ¯ 1-4. ÇÕ¼º°ö ½Å°æ¸Á°ú ¼øÈ¯ ½Å°æ¸Á¿¡¼­ÀÇ °¡ÁßÄ¡ °øÀ¯ 1-5. ±Í³³Àû ÆíÇâÀÇ ¿ªÇÒ 2. ±×·¡ÇÁ ½Å°æ¸Á (Graph Neural Network; GNN) 2-1. ¼Ò¼È ³×Æ®¿öÅ© ¿¹Á¦ 2-2. ±×·¡ÇÁ Ç¥Çö (Graph representations) 2-3. ºÐÀÚ Ç¥Çö (Molecular representation) 2-4. ºÐÀÚ ±×·¡ÇÁ 2-5. ¿øÀÚ Æ¯Â¡ Çà·Ä (Atom feature matrix) 2-6. ÀÎÁ¢ Çà·Ä (Adjacency matrix) 2-7. ±×·¡ÇÁ ÇÕ¼º°ö ½Å°æ¸Á (Graph Convolutional Network; GCN) 2-8. ±×·¡ÇÁ ÇÕ¼º°ö ½Å°æ¸Á¿¡¼­ Àº´Ð »óÅ ¾÷µ¥ÀÌÆ® 2-9. ±×·¡ÇÁ ÇÕ¼º°ö ½Å°æ¸ÁÀÇ ÀϹÝÈ­µÈ ¾÷µ¥ÀÌÆ® ¹æ½Ä 2-10. ÇÕ¼º°ö ½Å°æ¸Á°ú ±×·¡ÇÁ ½Å°æ¸Á ºñ±³ 2-11. ¸®µå¾Æ¿ô(Readout) °úÁ¤ 2-12. ¸®µå¾Æ¿ôÀÇ Æ¯Â¡ ¹× ±¸Çö ¹æ½Ä 2-13. ±×·¡ÇÁ ÇÕ¼º°ö ½Å°æ¸ÁÀÇ Àüü ±¸Á¶ 2-14. ±Í³³Àû ÆíÇâÀÇ ¿ä¾à 2-15. °¡»ó Ž»ö Àû¿ë »ç·Ê 2-16. ±×·¡ÇÁ ÇÕ¼º°ö ½Å°æ¸Á ¸ðµ¨À» Ȱ¿ëÇÑ ¿¹Á¦ ¿¬±¸ 2-17. °Å¸® ÀÎ½Ä ±×·¡ÇÁ ¾îÅÙ¼Ç ½Å°æ¸Á (Distance-aware Graph Attention Network) 2-18. °Å¸® ÀÎ½Ä ±×·¡ÇÁ ¾îÅÙ¼Ç ½Å°æ¸ÁÀÇ »óÈ£ÀÛ¿ë È¿°ú 2-19. »óÈ£ÀÛ¿ë È¿°ú¸¦ ¹Ý¿µÇÑ Â÷°¨ 2-20. µ¥ÀÌÅͼ ±¸¼º 2-21. °áÇÕ Æ÷Áî ¿¹Ãø °á°ú 2-22. DUD-E µ¥ÀÌÅͼ °á°ú 2-23. ÀϹÝÈ­ ¹®Á¦ Chapter 6. »ý¼º AI ±â¹Ý ¾à¹° ¼³°è (Generative AI for drug design) 1. »ý¼º AIÀÇ °³³ä 1-1. »ý¼º AI¶õ ¹«¾ùÀΰ¡? 1-2. ¾à¹° ¹ß°ß¿¡ ¹ÌÄ¡´Â ¿µÇâ 2. Áöµµ ÇнÀ°ú ºñÁöµµ ÇнÀ 3. »ý¼º AIÀÇ ÇÙ½É °³³ä 4. »ý¼º ¸ðµ¨ÀÇ ºÐ·ù 5. Kullback-Leibler (KL) ¹ß»ê 6. ¿ÀÅäÀÎÄÚ´õ (AE)¿Í º¯ºÐ ¿ÀÅäÀÎÄÚ´õ (VAE) 6-1. ¿ÀÅäÀÎÄÚ´õ (AutoEncoder, AE) 6-2. º¯ºÐ ¿ÀÅäÀÎÄÚ´õ (Variational AutoEncoder, VAE) 7. »ý¼ºÀû Àû´ë ½Å°æ¸Á (Generative Adversarial Network; GAN) 8. »ý¼º AI ±â¹Ý ºÐÀÚ ¼³°è »ç·Ê ¿¬±¸ Chapter 7. ÇâÈÄ Àü¸Á 1. ¹ÙÀÌ¿À ºÐ¾ß¿¡¼­ µö·¯´×ÀÇ ±Þ°ÝÇÑ ¹ßÀü 2. ¸ÖƼ¸ð´Þ AIÀÇ ÃâÇö 3. ÇÕ¼º ¹× ½ÇÇè ÀÚµ¿È­ ·Îº¿ÀÇ µîÀå 4. ÀÚÀ² ¾à¹° ¼³°è (Autonomous drug design) 5. AI ¿¡ÀÌÀüÆ® 6. AI ±â¹Ý ½Å¾à °³¹ßÀÇ ¾à¼Ó°ú ÇѰè Âü°í¹®Çå º¸ÃæÀÚ·á
±¸¸ÅÈıâ
ÀÌ »óǰ¿¡ ´ëÇÑ ±¸¸ÅÈıâ´Â ±¸¸ÅÇϽŠºÐ¿¡ ÇÑÇØ 'ÁÖ¹®/¹è¼ÛÁ¶È¸'¿¡¼­ ÀÛ¼ºÇÏ½Ç ¼ö ÀÖ½À´Ï´Ù.
¸¸Á·µµ¼ø
Ãֽżø
ÀÛ¼ºµÈ ±¸¸ÅÈıⰡ ¾ø½À´Ï´Ù.
    »óǰQ&A
    »óǰ¿¡ °üÇÑ ±Ã±ÝÇϽŠ»çÇ×À» ¹°¾îº¸¼¼¿ä!
    ±Û¾²±â
    ±Û¾²±â
      ¹è¼Û/±³È¯/ȯºÒ ¾È³»
      ¹è¼Û¾È³»
      - ÁÖ¹®±Ý¾×ÀÌ 15,000¿ø ÀÌ»óÀÎ °æ¿ì ¹«·á¹è¼Û, 15,000 ¹Ì¸¸ÀÎ °æ¿ì ¹è¼Ûºñ 2,500¿øÀÌ ºÎ°úµË´Ï´Ù. (´Ü, ¹«·á¹è¼Û »óǰÀÇ °æ¿ì Á¦¿Ü)
      - ÁÖ¹® ÈÄ ¹è¼ÛÁö¿ª¿¡ µû¶ó ±¹³» ÀϹÝÁö¿ªÀº ±Ù¹«ÀÏ(¿ù-±Ý) ±âÁØ 1Àϳ» Ãâ°íµÊÀ» ¿øÄ¢À¸·Î Çϳª, ±â»ó»óȲ µîÀÇ ÀÌÀ¯·Î Áö¿¬µÉ ¼öµµ ÀÖ½À´Ï´Ù. (´Ü, ÀÏ¿äÀÏ ¹× °øÈÞÀÏ¿¡´Â ¹è¼ÛµÇÁö ¾Ê½À´Ï´Ù.)
      - µµ¼­ »ê°£ Áö¿ª ¹× Á¦ÁÖµµÀÇ °æ¿ì´Â Ç×°ø/µµ¼± Ãß°¡¿îÀÓÀÌ ºÎ°úµÉ ¼ö ÀÖ½À´Ï´Ù.
      - ÇØ¿ÜÁö¿ªÀ¸·Î´Â ¹è¼ÛµÇÁö ¾Ê½À´Ï´Ù.
      ±³È¯/ȯºÒ ¾È³»
      - »óǰÀÇ Æ¯¼º¿¡ µû¸¥ ±¸Ã¼ÀûÀÎ ±³È¯ ¹× ȯºÒ±âÁØÀº °¢ »óǰÀÇ '»ó¼¼Á¤º¸'¸¦ È®ÀÎÇϽñ⠹ٶø´Ï´Ù.
      - ±³È¯ ¹× ȯºÒ½ÅûÀº °¡°Ô ¿¬¶ôó·Î ÀüÈ­ ¶Ç´Â À̸ÞÀÏ·Î ¿¬¶ôÁֽøé ÃÖ¼±À» ´ÙÇØ ½Å¼ÓÈ÷ ó¸®ÇØ µå¸®°Ú½À´Ï´Ù.

      ±³È¯ ¹× ȯºÒ °¡´É »óǰ¿¡
      ¹®Á¦°¡ ÀÖÀ» °æ¿ì
      1) »óǰÀÌ Ç¥½Ã/±¤°íµÈ ³»¿ë°ú ´Ù¸£°Å³ª ºÒ·®(ºÎÆÐ, º¯Áú, ÆÄ¼Õ, Ç¥±â¿À·ù, À̹°È¥ÀÔ, Áß·®¹Ì´Þ)ÀÌ ¹ß»ýÇÑ °æ¿ì
      - ½Å¼±½Äǰ, ³ÃÀå½Äǰ, ³Ãµ¿½Äǰ : ¼ö·ÉÀÏ ´ÙÀ½³¯±îÁö ½Åû
      - ±âŸ »óǰ : ¼ö·ÉÀϷκÎÅÍ 30ÀÏ À̳», ±× »ç½ÇÀ» ¾È ³¯ ¶Ç´Â ¾Ë ¼ö ÀÖ¾ú´ø ³¯·ÎºÎÅÍ 30ÀÏ À̳» ½Åû
      2) ±³È¯ ¹× ȯºÒ½Åû ½Ã ÆÇ¸ÅÀÚ´Â »óǰÀÇ »óŸ¦ È®ÀÎÇÒ ¼ö ÀÖ´Â »çÁøÀ» ¿äûÇÒ ¼ö ÀÖÀ¸¸ç »óǰÀÇ ¹®Á¦ Á¤µµ¿¡ µû¶ó Àç¹è¼Û, ÀϺÎȯºÒ, ÀüüȯºÒÀÌ ÁøÇàµË´Ï´Ù. ¹Ýǰ¿¡ µû¸¥ ºñ¿ëÀº ÆÇ¸ÅÀÚ ºÎ´ãÀ̸ç ȯºÒÀº ¹ÝǰµµÂøÀϷκÎÅÍ ¿µ¾÷ÀÏ ±âÁØ 3ÀÏ À̳»¿¡ ¿Ï·áµË´Ï´Ù.
      ´Ü¼øº¯½É ¹×
      ÁÖ¹®Âø¿ÀÀÇ °æ¿ì
      1) ½Å¼±½Äǰ, ³ÃÀå½Äǰ, ³Ãµ¿½Äǰ
      ÀçÆÇ¸Å°¡ ¾î·Á¿î »óǰÀÇ Æ¯¼º»ó, ±³È¯ ¹× ȯºÒÀÌ ¾î·Æ½À´Ï´Ù.
      2) È­Àåǰ
      ÇǺΠƮ·¯ºí ¹ß»ý ½Ã Àü¹®ÀÇ Áø´Ü¼­ ¹× ¼Ò°ß¼­¸¦ Á¦ÃâÇϽøé ȯºÒ °¡´ÉÇÕ´Ï´Ù. ÀÌ °æ¿ì Á¦¹Ýºñ¿ëÀº ¼ÒºñÀÚ ºÎ´ãÀ̸ç, ¹è¼Ûºñ´Â ÆÇ¸ÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù. ÇØ´ç È­Àåǰ°ú ÇǺΠƮ·¯ºí°úÀÇ »ó´çÇÑ Àΰú°ü°è°¡ ÀÎÁ¤µÇ´Â °æ¿ì ¶Ç´Â Áúȯġ·á ¸ñÀûÀÇ °æ¿ì¿¡´Â Áø´Ü¼­ ¹ß±Þºñ¿ëÀ» ÆÇ¸ÅÀÚ°¡ ºÎ´ãÇÕ´Ï´Ù.
      3) ±âŸ »óǰ
      ¼ö·ÉÀϷκÎÅÍ 7ÀÏ À̳» ½Åû, ¿Õº¹¹è¼Ûºñ´Â ¼ÒºñÀÚ ºÎ´ã
      4) ¸ð´ÏÅÍ ÇØ»óµµÀÇ Â÷ÀÌ·Î »ö»óÀ̳ª À̹ÌÁö°¡ ´Ù¸¥ °æ¿ì ´Ü¼øº¯½É¿¡ ÀÇÇÑ ±³È¯ ¹× ȯºÒÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
      ±³È¯ ¹× ȯºÒ ºÒ°¡ 1) ½Åû±âÇÑÀÌ Áö³­ °æ¿ì
      2) ¼ÒºñÀÚÀÇ °ú½Ç·Î ÀÎÇØ »óǰ ¹× ±¸¼ºÇ°ÀÇ Àüü ¶Ç´Â ÀϺΰ¡ ¾ø¾îÁö°Å³ª ÈѼÕ, ¿À¿°µÇ¾úÀ» °æ¿ì
      3) °³ºÀÇÏ¿© ÀÌ¹Ì ¼·ÃëÇÏ¿´°Å³ª »ç¿ë(Âø¿ë ¹× ¼³Ä¡ Æ÷ÇÔ)ÇØ »óǰ ¹× ±¸¼ºÇ°ÀÇ °¡Ä¡°¡ ¼Õ»óµÈ °æ¿ì
      4) ½Ã°£ÀÌ °æ°úÇÏ¿© »óǰÀÇ °¡Ä¡°¡ ÇöÀúÈ÷ °¨¼ÒÇÑ °æ¿ì
      5) »ó¼¼Á¤º¸ ¶Ç´Â »ç¿ë¼³¸í¼­¿¡ ¾È³»µÈ ÁÖÀÇ»çÇ× ¹× º¸°ü¹æ¹ýÀ» ÁöŰÁö ¾ÊÀº °æ¿ì
      6) »çÀü¿¹¾à ¶Ç´Â ÁÖ¹®Á¦ÀÛÀ¸·Î ÅëÇØ ¼ÒºñÀÚÀÇ ÁÖ¹®¿¡ µû¶ó °³º°ÀûÀ¸·Î »ý»êµÇ´Â »óǰÀÌ ÀÌ¹Ì Á¦ÀÛÁøÇàµÈ °æ¿ì
      7) º¹Á¦°¡ °¡´ÉÇÑ »óǰ µîÀÇ Æ÷ÀåÀ» ÈѼÕÇÑ °æ¿ì
      8) ¸À, Çâ, »ö µî ´Ü¼ø ±âÈ£Â÷ÀÌ¿¡ ÀÇÇÑ °æ¿ì